skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tian, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, ‘growth feedback’, results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations. 
    more » « less
  2. The effects of host resource limitations on the function of synthetic gene circuits have gained significant attention over the past years. Hosts, having evolved resource capacities optimal for their own genome, have been repeatedly demonstrated to suffer from the added burden of synthetic genetic programs, which may in return pose deleterious effects on the circuit’s function. Three resource controller archetypes have been proposed previously to mitigate resource distribution problems in dynamic circuits: the local controller, the global controller, and a “negatively competitive” regulatory (NCR) controller that utilizes synthetic competition to combat resource competition. The dynamics of negative feedback forms of these controllers have been previously investigated, and here we extend the analysis of these resource allocation strategies to the incoherent feedforward loop (iFFL) topology. We demonstrate that the three iFFL controllers can attenuate Winner-Take-All resource competition between two bistable switches. We uncover that the parameters associated with the synthetic competition in the NCR iFFL controller are paramount to its increased efficacy over the local controller type, while the global controllers demonstrate to be relatively ineffectual. Interestingly, unlike the negative feedback counterpart topologies, iFFL controllers exhibit a unique coupling of switch activation thresholds which we term the “coactivation threshold shift” effect. Finally, we demonstrate that a nearly fully orthogonal set of bistable switches could be achieved by pairing an NCR controller with an appropriate level of controller resource consumption. 
    more » « less
  3. You, Lingchong (Ed.)
    The mutual interactions between the synthetic gene circuits and the host growth could cause unexpected outcomes in the dynamical behaviors of the circuits. However, how the steady states and the stabilities of the gene circuits are affected by host cell growth is not fully understood. Here, we developed a mathematical model for nonlinear growth feedback based on published experimental data. The model analysis predicts that growth feedback could significantly change the qualitative states of the system. Bistability could emerge in a circuit without positive feedback, and high-order multistability (three or more steady states) arises in the self-activation and toggle switch circuits. Our results provide insight into the potential effects of ultrasensitive growth feedback on the emergence of qualitative states in synthetic circuits and the corresponding underlying mechanism. 
    more » « less
  4. You, Lingchong (Ed.)
    The Hippo-YAP/TAZ signaling pathway plays a critical role in tissue homeostasis, tumorigenesis, and degeneration disorders. The regulation of YAP/TAZ levels is controlled by a complex regulatory network, where several feedback loops have been identified. However, it remains elusive how these feedback loops contain the YAP/TAZ levels and maintain the system in a healthy physiological state or trap the system in pathological conditions. Here, a mathematical model was developed to represent the YAP/TAZ regulatory network. Through theoretical analyses, three distinct states that designate the one physiological and two pathological outcomes were found. The transition from the physiological state to the two pathological states is mechanistically controlled by coupled bidirectional bistable switches, which are robust to parametric variation and stochastic fluctuations at the molecular level. This work provides a mechanistic understanding of the regulation and dysregulation of YAP/TAZ levels in tissue state transitions. 
    more » « less
  5. null (Ed.)
    Abstract Failure of modularity remains a significant challenge for assembling synthetic gene circuits with tested modules as they often do not function as expected. Competition over shared limited gene expression resources is a crucial underlying reason. It was reported that resource competition makes two seemingly separate genes connect in a graded linear manner. Here we unveil nonlinear resource competition within synthetic gene circuits. We first build a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve two successive cell fate transitions. Interestingly, we find that the in vivo transition path was redirected as the activation of one switch always prevails against the other, contrary to the theoretically expected coactivation. This qualitatively different type of resource competition between the two modules follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the modules. To decouple the resource competition, we construct a two-strain circuit, which achieves successive activation and stable coactivation of the two switches. These results illustrate that a highly nonlinear hidden interaction between the circuit modules due to resource competition may cause counterintuitive consequences on circuit functions, which can be controlled with a division of labor strategy. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)